کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
446993 1443200 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A model distance maximizing framework for speech recognizer-based speech enhancement
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
A model distance maximizing framework for speech recognizer-based speech enhancement
چکیده انگلیسی

This paper has presented a novel discriminative parameter calibration approach based on the model distance maximizing (MDM) framework to improve the performance of our previously-proposed method based on spectral subtraction (SS) in a likelihood-maximizing framework. In the previous work, spectral over-subtraction factors were adjusted based on the conventional maximum-likelihood (ML) approach that utilized only the true model and did not consider other confused models, thus likely reached suboptimal solutions. While in the proposed MDM framework, improved speech recognition performance is obtained by maximizing the dissimilarities among models. Experimental results based on FARSDAT, TIMIT and real distant-talking databases have demonstrated that the MDM framework outperformed ML in terms of recognition accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 65, Issue 2, February 2011, Pages 99–106
نویسندگان
, , ,