کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4529049 | 1625942 | 2015 | 10 صفحه PDF | دانلود رایگان |

• Antioxidant systems of three macrophytes were triggered by M. aeruginosa extracts.
• Crude extracts induced photosynthetic pigment changes in all exposed macrophytes.
• Crude extracts increased glutathione S-transferase production in three macrophytes.
Microcystins (MCs) produced by cyanobacteria in natural environments are a potential risk to the integrity of ecosystems. In this study, the effects of cyanobacterial cell-free crude extracts from a Microcystis aeruginosa bloom containing three MC-congeners MC-LR, -RR, and -YR at environmental relevant concentrations of 49.3 ± 2.9, 49.8 ± 5.9, and 6.9 ± 3.8 μg/L, respectively, were evaluated on Ceratophyllum demersum (L.), Egeria densa (Planch.), and Hydrilla verticillata (L.f.). Effects on photosynthetic pigments (total chlorophyll (chl), chl a, chl b, and carotenoids), enzymatic defense led by catalase (CAT), peroxidase (POD) and glutathione reductase (GR), and biotransformation enzyme glutathione S-transferase (GST) were measured after 1, 4, and 8 h and after 1, 3, 7, and 14 days of exposure. Results show that in all exposed macrophytes, photosynthetic pigments were negatively affected. While chl a and total chl decreased with increasing exposure time, a parallel increase in chl b was observed after 8 h. Concomitant increase of ∼5, 16, and 34% of antioxidant carotenoid concentration in exposed C. demersum, E. densa, and H. verticillata, respectively, was also displayed. Enzymatic antioxidant defense systems in all exposed macrophytes were initiated within the first hour of exposure. In exposed E. densa, highest values of CAT and GR activities were observed after 4 and 8 h, respectively, while in exposed H. verticillata highest value of POD activity was observed after 8 h. An early induction with a significant increase of biotransformation enzyme GST was observed in E. densa after 4 h and in C. demersum and H. verticillata after 8 h. These results are the first to show rapid induction of stress and further possible MC biotransformation (based on the activation of GST enzymatic activity included in MC metabolization during the biotransformation mechanism) in macrophytes exposed to crude extract containing a mixture of MCs.
Journal: Aquatic Toxicology - Volume 163, June 2015, Pages 130–139