کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4529679 1625976 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low-level pyrene exposure causes cardiac toxicity in zebrafish (Danio rerio) embryos
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Low-level pyrene exposure causes cardiac toxicity in zebrafish (Danio rerio) embryos
چکیده انگلیسی

It is widely accepted that the most abundant polycyclic aromatic hydrocarbons (PAHs) in weathered crude oils is cardiotoxic. Although PAHs toxic endpoints show strong correlation with the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor, and is thought to be a potent inducer of cytochrome P4501A, the action mechanism of PAHs on vertebrate cardiovascular development and disease is unclear. Herein, we address the cardiac developmental effects of exposure to the weak AhR agonist pyrene on the early life-stages of zebrafish. Embryos were exposed to 0, 0.05, 0.5, 5, and 50 nmol/L pyrene up to 72 h post-fertilization (hpf). Pyrene-treated embryos showed dose-dependent heart abnormalities, such as pericardial edema and cardiac looping defects. Changes in AhR1a, AhR1b, AhR2, and Cyp1A expression were assessed by real-time RT-PCR. The results showed that low-level pyrene failed to alter these genes expression. However, the homeodomain transcription factor Nkx2.5, which plays an essential role in the development of the cardiovascular system, was down-regulated in a dose-dependent manner by pyrene exposure. The bone morphogenetic protein 2b (Bmp2b), which has been identified as the upstream gene of Nkx2.5, also was inhibited in a dose-dependent manner after treatment with pyrene. Taken together, these data indicated that embryonic exposure of zebrafish to low-level environmental pyrene disrupt normal cardiac development and alter expression of defective cardiac differentiation related genes.


► Low-level environmental pyrene exposure to embryos of zebrafish also disrupts normal cardiac development.
► The mechanism(s) of environmental level pyrene exposure may not share the same pathway (mediated by AhR activation and Cyp1A metabolism).
► The cardiac toxicity of pyrene might through regulate the expression of Bmp2b, and then Bmp2b subsequently modulate the mRNA level of Nkx2.5.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Toxicology - Volumes 114–115, 15 June 2012, Pages 119–124
نویسندگان
, , , , , ,