کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4530062 | 1324680 | 2011 | 9 صفحه PDF | دانلود رایگان |

Hydroxylated fullerenes act as potent inhibitors of cytochrome P450-dependent monooxygenases, and are reported to be very strong antioxidants quenching reactive oxygen species (ROS) production. Effects of nanosized hydroxylated fullerenes on fish neutrophil function and immune gene transcription was investigated using fathead minnow (Pimephales promelas). Neutrophil function assays were used to determine the effects of fullerene exposure in vitro and in vivo on oxidative burst, degranulation and extracellular trap (NETs) release, and the innate immune gene trascription was determined with quantitative PCR (qPCR). Application of fullerenes (0.2–200 μg mL−1in vitro) caused concentration dependent inhibition of oxidative burst and suppressed the release of NETs and degranulation of primary granules (up to 70, 40, and 50% reduction in activity compared to non-treated control, respectively). Transcription of interleukin 11 and myeloperoxidase genes was significantly increased and transcription of elastase 2 gene was significantly decreased in fish exposed to hydroxylated fullerenes for 48 h in vivo (12 and 3 fold increase, and 5 fold decrease, respectively). Observed changes in gene transcription and neutrophil function indicate potential for hydroxylated fullerenes to interfere with the evolutionary conserved innate immune system responses and encourages the use of fish models in studies of nanoparticle immunotoxicity.
Journal: Aquatic Toxicology - Volume 101, Issue 2, 25 January 2011, Pages 474–482