کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
454108 695098 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An approximation method of origin–destination flow traffic from link load counts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
An approximation method of origin–destination flow traffic from link load counts
چکیده انگلیسی

Traffic matrix (TM) is a key input of traffic engineering and network management. However, it is significantly difficult to attain TM directly, and so TM estimation is so far an interesting topic. Though many methods of TM estimation are proposed, TM is generally unavailable in the large-scale IP backbone networks and is difficult to be estimated accurately. This paper proposes a novel method of TM estimation in large-scale IP backbone networks, which is based on the generalized regression neural network (GRNN), called GRNN TM estimation (GRNNTME) method. Firstly, building on top of GRNN, we present a multi-input and multi-output model of large-scale TM estimation. Because of the powerful capability of learning and generalizing of GRNN, the output of our model can sufficiently capture the spatio-temporal correlations of TM. This ensures that the estimation of TM can accurately be attained. And then GRNNTME uses the procedure of data posttreating further to make the output of our model closer to real value. Finally, we use the real data from the Abilene Network to validate GRNNTME. Simulation results show that GRNNTME can perform well the accurate and fast estimation of TM, track its dynamics, and holds the stronger robustness and lower estimation errors.

Spatial and temporal relative estimation errors.Figure optionsDownload as PowerPoint slideHighlights
► We model traffic matrix estimation problem.
► We present a multi-input and multi-output model.
► Our model can capture the spatio-temporal correlations of traffic matrix.
► We examine the robustness of our estimation method.
► We obtain the more accurate estimation of traffic matrix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 37, Issue 6, November 2011, Pages 1106–1121
نویسندگان
, , , , , ,