کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
454163 | 695108 | 2010 | 8 صفحه PDF | دانلود رایگان |

This paper proposes a new method to segment and track multiple objects through occlusion by integrating spatial-color Gaussian mixture model (SCGMM) into an energy minimization framework. When occlusion does not occur, a SCGMM is learned for each object. When the objects are subject to occlusion, energy minimization is used to segment the objects from occlusion. To make the learned SCGMMs suitable for the segmentation of the current occlusion, a displacing procedure is utilized to adapt the SCGMMs to the spatial variations. A multi-label energy function is formulated building on the displaced SCGMMs and then minimized using the multi-label graph cut algorithm, thus leading to both the segmentation and tracking results of the objects with occlusion. Experimental validation of the proposed method is performed and presented on several video sequences.
Journal: Computers & Electrical Engineering - Volume 36, Issue 5, September 2010, Pages 927–934