کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4542768 1626797 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Catch curve stock-reduction analysis: An alternative solution to the catch equations
ترجمه فارسی عنوان
گرفتن تجزیه و تحلیل کاهش انحنای منحنی: یک راه حل جایگزین برای معادلات گرفتن
کلمات کلیدی
تجزیه و تحلیل ذخیره انباشته، گرفتن منحنی، گرفتن اطلاعات محدودیت بیش از حد ماهیگیری، تنوع استخدام، دینامیک تلاش، نمونه گیری سن-ترکیب، ارزیابی سهام کمبود داده، وضعیت سهام
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
چکیده انگلیسی


• Scientific advice is necessary for management of data-poor fisheries.
• Stock-reduction analysis (SRA) requires an assumption of final biomass.
• Catch-curve stock reduction analysis (CC-SRA) replaces this assumption using age-composition data.
• Catch curves require the assumption that fishing mortality is constant over time.
• CC-SRA replaces this assumption using changes in catches over time.

Legislative changes in the United States and elsewhere now require scientific advice on catch limits for data-poor fisheries. The family of stock reduction analysis (SRA) models is widely used to calculate sustainable harvest levels given a time series of harvest data. SRA works by solving the catch equation given an assumed value for spawning biomass relative to unfished levels in the final (or recent) year, and resulting estimates of recent fishing mortality are biased when this assumed value is mis-specified. We therefore propose to replace this assumption when estimating stock status by using compositional data in recent years to estimate a catch curve and hence estimating fishing mortality in those years. We compare this new “catch-curve stock reduction analysis” (CC-SRA) with an SRA or catch curve using simulated data for slow or fast life histories and various magnitudes of recruitment variability. Results confirm that the SRA yields biased estimates of current fishing mortality given mis-specified information about recent spawning biomass, and that the catch curve is biased due to changes in fishing mortality over time. CC-SRA, by contrast, is approximately unbiased for low or moderate recruitment variability, and less biased than other methods given high recruitment variability. We therefore recommend CC-SRA as a data-poor assessment method that incorporates compositional data collection in recent years, and suggest future management strategy evaluation given a data-poor control rule.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fisheries Research - Volume 171, November 2015, Pages 33–41
نویسندگان
, ,