کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
455061 695334 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fractional Fourier transform based features for speaker recognition using support vector machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Fractional Fourier transform based features for speaker recognition using support vector machine
چکیده انگلیسی

This paper presents a text-independent speaker recognition technique in which the conventional Fourier transform in Mel-Frequency Cepstral Coefficient (MFCC) front-end is substituted by fractional Fourier transform. Support Vector Machine (SVM) maps these input features into a high-dimensional space to separate classes by a hyperplane with enhanced discrimination capability. SVM based on mean-squared error classifier produces more accurate system. The Fractional Fourier Transform (FrFT) reveals the mixed time and frequency components of the signal. Modelling of speech signals as mixed time and frequency signals represents better production and perception speech characteristics. Processing of time-varying signals in fractional Fourier domain allows us to estimate the signal with least Mean Square Error (MSE) making the technique robust against additive noise compared to Fourier domain maintaining same computational complexity. The feasibility of the proposed technique has been tested experimentally using Texas Instruments and Massachusetts Institute of Technology (TIMIT) and Shri Guru Gobind Singhji (SGGS) databases. The experimental results show the superiority of the proposed method.

Figure optionsDownload as PowerPoint slideHighlights
► Fractional Fourier transform based MFCC features.
► Text-independent speaker recognition system.
► Noise insensitive technique.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 39, Issue 2, February 2013, Pages 550–557
نویسندگان
, ,