کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
455279 695354 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Series feature aggregation for content-based image retrieval
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Series feature aggregation for content-based image retrieval
چکیده انگلیسی

Feature aggregation is a critical technique in content-based image retrieval (CBIR) systems that employs multiple visual features to characterize image content. Most previous feature aggregation schemes apply parallel topology, e.g., the linear combination scheme, which suffer from two problems. First, the function of individual visual feature is limited since the ranks of the retrieved images are determined only by the combined similarity. Second, the irrelevant images seriously affect the retrieval performance of feature aggregation scheme since all images in a collection will be ranked. To address these problems, we propose a new feature aggregation scheme, series feature aggregation (SFA). SFA selects relevant images using visual features one by one in series from the images highly ranked by the previous visual feature. The irrelevant images will be effectively filtered out by individual visual features in each stage, and the remaining images are collectively described by all visual features. Experiments, conducted with IAPR TC-12 benchmark image collection (ImageCLEF2006) that contains over 20,000 photographic images and defined queries, have shown that the proposed SFA can outperform conventional parallel feature aggregation schemes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 36, Issue 4, July 2010, Pages 691–701
نویسندگان
, ,