کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
455765 695545 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Automated two-dimensional K-means clustering algorithm for unsupervised image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Automated two-dimensional K-means clustering algorithm for unsupervised image segmentation
چکیده انگلیسی

This paper introduces the Automated Two-Dimensional K-Means (A2DKM) algorithm, a novel unsupervised clustering technique. The proposed technique differs from the conventional clustering techniques because it eliminates the need for users to determine the number of clusters. In addition, A2DKM incorporates local and spatial information of the data into the clustering analysis. A2DKM is qualitatively and quantitatively compared with the conventional clustering algorithms, namely, the K-Means (KM), Fuzzy C-Means (FCM), Moving K-Means (MKM), and Adaptive Fuzzy K-Means (AFKM) algorithms. The A2DKM outperforms these algorithms by producing more homogeneous segmentation results.

Figure optionsDownload as PowerPoint slideHighlights
► An Automated 2D K-Means (A2DKM) clustering algorithm is proposed.
► The proposed A2DKM algorithm eliminates the determination of number of clusters.
► The A2DKM incorporates local and spatial information of data during clustering process.
► Findings indicate the A2DKM outperforms other state-of-the-art clustering techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 39, Issue 3, April 2013, Pages 907–917
نویسندگان
, , ,