کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
455769 695545 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using Hilbert scan on statistical color space partitioning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Using Hilbert scan on statistical color space partitioning
چکیده انگلیسی

This study proposes a method to combine the k-Nearest Neighbor (k-NN) algorithm and the Support Vector Machine (SVM) method to increase the image annotation accuracy. Image annotation is widely employed in domains such as web image classification, search, military, and biomedicine. Although the traditional Border/Interior pixel Classification (BIC) features are very efficient and compact when applied to image annotation to capture color, shape, and texture information, the color space histogram utilization rates are not balanced. The experiment results show that the Hilbert-scan method and the One-pass Partitioning Method (OPM) can effectively overcome the imbalance problem.

Figure optionsDownload as PowerPoint slideHighlights
► The BIC features inherit the problem that the utilization rates are not balanced.
► A One-pass Partitioning Method (OPM) is efficient in partitioning the color space.
► The proposed OPM can balance the utilization rates of each feature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 39, Issue 3, April 2013, Pages 957–969
نویسندگان
, , , ,