کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4581599 1333709 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils
چکیده انگلیسی

Soil salinization is a land degradation process that leads to reduced agricultural yields. This study investigated the method that can best predict electrical conductivity (EC) in dry soils using individual bands, a normalized difference salinity index (NDSI), partial least squares regression (PLSR), and bagging PLSR. Soil spectral reflectance of dried, ground, and sieved soil samples containing varying amounts of EC was measured using an ASD FieldSpec spectrometer in a darkroom. Predictive models were computed using a training dataset. An independent validation dataset was used to validate the models. The results showed that good predictions could be made based on bagging PLSR using first derivative reflectance (validation R2 = 0.85), PLSR using untransformed reflectance (validation R2 = 0.70), NDSI (validation R2 = 0.65), and the untransformed individual band at 2 257 nm (validation R2 = 0.60) predictive models. These suggested the potential of mapping soil salinity using airborne and/or satellite hyperspectral data during dry seasons.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pedosphere - Volume 22, Issue 5, October 2012, Pages 640-649