کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4595705 1336130 2017 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum distance functions of graded ideals and Reed–Muller-type codes
ترجمه فارسی عنوان
توابع فاصله حداقل از ایده آل ها و کدهای نوع Reed-Muller
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

We introduce and study the minimum distance function of a graded ideal in a polynomial ring with coefficients in a field, and show that it generalizes the minimum distance of projective Reed–Muller-type codes over finite fields. This gives an algebraic formulation of the minimum distance of a projective Reed–Muller-type code in terms of the algebraic invariants and structure of the underlying vanishing ideal. Then we give a method, based on Gröbner bases and Hilbert functions, to find lower bounds for the minimum distance of certain Reed–Muller-type codes. Finally we show explicit upper bounds for the number of zeros of polynomials in a projective nested cartesian set and give some support to a conjecture of Carvalho, Lopez-Neumann and López.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 221, Issue 2, February 2017, Pages 251–275
نویسندگان
, , ,