کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598393 1631083 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energy
ترجمه فارسی عنوان
تسلط آستانه طیفی، حدس براور و حداکثری انرژی لاپلاس
کلمات کلیدی
انرژی لاپلاسایی؛ نمودار آستانه؛ حدس براور؛ قضیه Grone-Merris-Bai
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

The Laplacian energy of a graph is the sum of the distances of the eigenvalues of the Laplacian matrix of the graph to the graph's average degree. The maximum Laplacian energy over all graphs on n nodes and m edges is conjectured to be attained for threshold graphs. We prove the conjecture to hold for graphs with the property that for each k there is a threshold graph on the same number of nodes and edges whose sum of the k largest Laplacian eigenvalues exceeds that of the k largest Laplacian eigenvalues of the graph. We call such graphs spectrally threshold dominated. These graphs include split graphs and cographs and spectral threshold dominance is preserved by disjoint unions and taking complements. We conjecture that all graphs are spectrally threshold dominated. This conjecture turns out to be equivalent to Brouwer's conjecture concerning a bound on the sum of the k largest Laplacian eigenvalues.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 512, 1 January 2017, Pages 18–31
نویسندگان
, ,