کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
461049 | 696535 | 2014 | 18 صفحه PDF | دانلود رایگان |
• Hybrid address spaces, as a new approach for software on non-coherent many-cores.
• Application-specific software-controlled coherence for non-coherent many-cores.
• Scalable, staged MapReduce runtime system on Intel SCC using hybrid address spaces.
• Scalable sorting and all-to-all exchange algorithms using on-chip communication.
This paper introduces hybrid address spaces as a fundamental design methodology for implementing scalable runtime systems on many-core architectures without hardware support for cache coherence. We use hybrid address spaces for an implementation of MapReduce, a programming model for large-scale data processing, and the implementation of a remote memory access (RMA) model. Both implementations are available on the Intel SCC and are portable to similar architectures. We present the design and implementation of HyMR, a MapReduce runtime system whereby different stages and the synchronization operations between them alternate between a distributed memory address space and a shared memory address space, to improve performance and scalability. We compare HyMR to a reference implementation and we find that HyMR improves performance by a factor of 1.71× over a set of representative MapReduce benchmarks. We also compare HyMR with Phoenix++, a state-of-art implementation for systems with hardware-managed cache coherence in terms of scalability and sustained to peak data processing bandwidth, where HyMR demonstrates improvements of a factor of 3.1× and 3.2× respectively. We further evaluate our hybrid remote memory access (HyRMA) programming model and assess its performance to be superior of that of message passing.
Journal: Journal of Systems and Software - Volume 97, November 2014, Pages 47–64