کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
461368 | 696586 | 2011 | 8 صفحه PDF | دانلود رایگان |

This paper proposes to utilize information within incomplete instances (instances with missing values) when estimating missing values. Accordingly, a simple and efficient nonparametric iterative imputation algorithm, called the NIIA method, is designed for iteratively imputing missing target values. The NIIA method imputes each missing value several times until the algorithm converges. In the first iteration, all the complete instances are used to estimate missing values. The information within incomplete instances is utilized since the second imputation iteration. We conduct some experiments for evaluating the efficiency, and demonstrate: (1) the utilization of information within incomplete instances is of benefit to easily capture the distribution of a dataset; and (2) the NIIA method outperforms the existing methods in accuracy, and this advantage is clearly highlighted when datasets have a high missing ratio.
Journal: Journal of Systems and Software - Volume 84, Issue 3, March 2011, Pages 452–459