کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
461724 | 696627 | 2013 | 17 صفحه PDF | دانلود رایگان |

In recent years, processor technology has evolved towards multicore processors, which include multiple processing units (cores) in a single package. Those cores, having their own private caches, often share a higher level cache memory dedicated to each processor die. This multi-level cache hierarchy in multicore processors raises the importance of cache utilization problem. Assigning parallel-running software components with common data to processor cores that do not share a common cache increases the number of cache misses. In this paper we present a novel approach that uses model-based information to guide the OS scheduler in assigning appropriate core affinities to software objects at run-time. We build graph models of software and cache hierarchies of processors and devise a graph matcher algorithm that provides mapping between these two graphs. Using this mapping we obtain candidate core sets that each software object can be affiliated with at run-time. These affiliations are determined based on the idea that software components that have the potential to share common data at run-time should run on cores that share a common cache. We also develop an object dispatcher algorithm that keeps track of object affiliations at run-time and dispatches objects by using the information from the compile-time graph matcher. We apply our approach on design pattern implementations and two different application program running on servers using CFS scheduling. Our results show that cache-aware dispatching based on information obtained from software model, decreases number of cache misses significantly and improves CFS’ scheduling performance.
• We provide matching between graph models of software and cache hierarchies of processors.
• We develop an object dispatcher algorithm that utilize cache-affinity scheduling principles.
• We apply our approach on different schedulers, architectures and software.
• Developed cache affinity dispatcher reduced the number of cache misses by 50%.
• Our object dispatcher was able to improve Linux’ CFS performance around 10%.
Journal: Journal of Systems and Software - Volume 86, Issue 11, November 2013, Pages 2754–2770