کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
462273 696694 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation
چکیده انگلیسی

Missing data is a widespread problem that can affect the ability to use data to construct effective prediction systems. We investigate a common machine learning technique that can tolerate missing values, namely C4.5, to predict cost using six real world software project databases. We analyze the predictive performance after using the k-NN missing data imputation technique to see if it is better to tolerate missing data or to try to impute missing values and then apply the C4.5 algorithm. For the investigation, we simulated three missingness mechanisms, three missing data patterns, and five missing data percentages. We found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same time, both C4.5 and k-NN are little affected by the missingness mechanism, but that the missing data pattern and the missing data percentage have a strong negative impact upon prediction (or imputation) accuracy particularly if the missing data percentage exceeds 40%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 81, Issue 12, December 2008, Pages 2361–2370
نویسندگان
, , , ,