کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626220 1631783 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gauss quadrature rules for numerical integration over a standard tetrahedral element by decomposing into hexahedral elements
ترجمه فارسی عنوان
مقادیر گواس برای مقادیر عددی بر عنصر چهار عنصر استاندارد با تقسیم به عناصر شبه عنصری، قوانین مختلط را تعیین می کند
کلمات کلیدی
روش عنصر محدود گاوس لندر چهارگوشه، عناصر چهارگوش و شش گوشه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

In recent years hexahedral elements have gained more importance than compared to tetrahedral elements (e.g. importance in the study of aero-acoustic equations using hexahedral elements to check the computational efficiency between tetrahedral and hexahedral elements). Also among the various integration schemes, Gauss Legendre quadrature which can evaluate exactly the (2n−1)th order polynomial with n-Gaussian points is most commonly used in view of the accuracy and efficiency of calculations. In this paper, we present a Gauss quadrature method for numerical integration over a standard tetrahedral element T[0,1]3 by decomposing into hexahedral elements H[−1,1]3. The method can be used for computing integrals of smooth functions, as well as functions with end-point singularities. The performance of the method is demonstrated with several numerical examples. By the proposed method, with less number of divisions we are obtaining the exact solutions with minimum errors and number of computations is reduced drastically. We have evaluated the aspect ratio value of each hexahedral element which is in the range 1–5, as per the element quality check these elements can be used for mesh generation in FEM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 271, 15 November 2015, Pages 1062–1070
نویسندگان
, ,