کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626262 1631784 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On iterative algorithms for the polar decomposition of a matrix and the matrix sign function
ترجمه فارسی عنوان
در الگوریتم های تکراری برای تجزیه قطبی یک ماتریس و تابع نشانه ماتریس
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

In this paper we consider relations between the principal iterations from the Padé family of Kenney and Laub for computing the matrix sign function and the principal iterations from the reciprocal Padé family of Greco, Iannazzo and Poloni, and the dual Padé family of Ziȩtak. We show global convergence of the principal reciprocal Padé iterations and the principal dual Padé iterations.We adopt the dual Padé family of iterations, to which the Newton method belongs, for computing the unitary polar factor of a nonsingular matrix. We present numerical experiments with the scaled Newton method of Higham for computing the unitary polar factor, which show how the quality of the computed inverses of matrices in the scaled Newton method affects the accuracy of the computed polar factorization of a nonsingular matrix. It indicates that assumptions, under which the backward stability of the scaled Newton method has been proved in the literature, cannot be weaker.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 270, 1 November 2015, Pages 483–495
نویسندگان
, , ,