کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626786 1631794 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new compact finite difference scheme for solving the complex Ginzburg–Landau equation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A new compact finite difference scheme for solving the complex Ginzburg–Landau equation
چکیده انگلیسی

The complex Ginzburg–Landau equation is often encountered in physics and engineering applications, such as nonlinear transmission lines, solitons, and superconductivity. However, it remains a challenge to develop simple, stable and accurate finite difference schemes for solving the equation because of the nonlinear term. Most of the existing schemes are obtained based on the Crank–Nicolson method, which is fully implicit and must be solved iteratively for each time step. In this article, we present a fourth-order accurate iterative scheme, which leads to a tri-diagonal linear system in 1D cases. We prove that the present scheme is unconditionally stable. The scheme is then extended to 2D cases. Numerical errors and convergence rates of the solutions are tested by several examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 260, 1 June 2015, Pages 269–287
نویسندگان
, , ,