کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4626802 1631795 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Integrable equations with Ermakov-Pinney nonlinearities and Chiellini damping
چکیده انگلیسی
We introduce a special type of dissipative Ermakov-Pinney equations of the form vζζ+g(v)vζ+h(v)=0, where h(v)=h0(v)+cv-3 and the nonlinear dissipation g(v) is based on the corresponding Chiellini integrable Abel equation. When h0(v) is a linear function, h0(v)=λ2v, general solutions are obtained following the Abel equation route. Based on particular solutions, we also provide general solutions containing a factor with the phase of the Milne type. In addition, the same kinds of general solutions are constructed for the cases of higher-order Reid nonlinearities. The Chiellini dissipative function is actually a dissipation-gain function because it can be negative on some intervals. We also examine the nonlinear case h0(v)=Ω02(v-v2) and show that it leads to an integrable hyperelliptic case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 259, 15 May 2015, Pages 1-11
نویسندگان
, ,