کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4627815 1631819 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An incremental decomposition method for unconstrained optimization
ترجمه فارسی عنوان
یک روش تجزیه ی افزایشی برای بهینه سازی بدون محدودیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی

In this work we consider the problem of minimizing a sum of continuously differentiable functions. The vector of variables is partitioned into two blocks, and we assume that the objective function is convex with respect to a block-component. Problems with this structure arise, for instance, in machine learning. In order to advantageously exploit the structure of the objective function and to take into account that the number of terms of the objective function may be huge, we propose a decomposition algorithm combined with a gradient incremental strategy. Global convergence of the proposed algorithm is proved. The results of computational experiments performed on large-scale real problems show the effectiveness of the proposed approach with respect to existing algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 235, 25 May 2014, Pages 80–86
نویسندگان
, ,