کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4627834 | 1631819 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new Ostrowski-Grüss inequality involving 3n knots
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This is the fifth and last in our series of notes concerning some classical inequalities such as the Ostrowski, Simpson, Iyengar, and Ostrowski-Grüss inequalities in R. In the last note, we propose an improvement of the Ostrowski-Grüss inequality which involves 3n knots where nâ§1 is an arbitrary numbers. More precisely, suppose that {xk}k=1nâ[0,1],{yk}k=1nâ[0,1], and {αk}k=1nâ[0,n] are arbitrary sequences with âk=1nαk=n and âk=1nαkxk=n/2. The main result of the present paper is to estimate1nâk=1nαkfa+(b-a)yk-1b-aâ«abf(t)dt-f(b)-f(a)nâk=1nαkyk-xkin terms of either fâ² or fâ³. Unlike the standard Ostrowski-Grüss inequality and its known variants which basically estimate f(x)-â«abf(t)dt/(b-a) in terms of a correction term as a linear polynomial of x and some derivatives of f, our estimate allows us to freely replace f(x) and the correction term by using 3n knots {xk}k=1n,{yk}k=1n and {αk}k=1n. As far as we know, this is the first result involving the Ostrowski-Grüss inequality with three sequences of parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 235, 25 May 2014, Pages 272-282
Journal: Applied Mathematics and Computation - Volume 235, 25 May 2014, Pages 272-282
نویسندگان
Vu Nhat Huy, Quá»c-Anh Ngô,