کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4627915 1631818 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving composite sum of powers via Padé approximation and orthogonal polynomials with application to optimal PWM problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Solving composite sum of powers via Padé approximation and orthogonal polynomials with application to optimal PWM problem
چکیده انگلیسی
This paper presents methods for solving the polynomial system∑j=1kxji-∑j=k+1nxji=pi,i=1,2,…,n,which is called the composite sum of powers. It is shown that these polynomial equation can be reduced to a single-variable polynomial equations by exploiting the modified Newton's identities. In this paper we generalize this identity and solve it via Padé approximation theory and the related theory of formal orthogonal polynomials (FOPs). Because the solution forms the roots of FOPs we present several interesting computational procedures, such as the use of three-term reccurence formulas, determinantal formulations and the computation of the eigenvalues of tridiagonal matrices. The computation of this special polynomial system arise in practical engineering task of solving optimal odd symmetry single-phase pulse-width modulated (PWM) problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 236, 1 June 2014, Pages 593-605
نویسندگان
,