کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4628124 1631824 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Repairing normal EDAs with selective repopulation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Repairing normal EDAs with selective repopulation
چکیده انگلیسی
The standard Estimation of Distribution Algorithm (EDA), usually, suffers from premature convergence due to an inherent inability to maintain an adequate variance and to preserve diverse candidate solutions. Normal multivariate EDAs have especially shown a lack of exploration even for convex objective functions. This article introduces several techniques which can be used to enhance the standard Normal multivariate EDA performance. The most important ones are based on (1) pre-selecting the candidate solutions to be evaluated, (2) replacing only a fraction of the population and (3) computing weighted estimators of the mean and covariance matrix. The resulting Normal EDA is competitive with similar approaches, as it is evidenced by statistical comparisons.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 230, 1 March 2014, Pages 65-77
نویسندگان
, , ,