کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4628210 1631817 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation by q-Durrmeyer type polynomials in compact disks in the case q>1
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Approximation by q-Durrmeyer type polynomials in compact disks in the case q>1
چکیده انگلیسی
Recently, Agarwal and Gupta (2012) [1] studied some approximation properties of the complex q-Durrmeyer type operators in the case 01. More precisely, approximation properties of the newly defined generalization of this operators in the case q>1 are studied. Quantitative estimates of the convergence, the Voronovskaja type theorem and saturation of convergence for complex q-Durrmeyer type polynomials attached to analytic functions in compact disks are given. In particular, it is proved that for functions analytic in z∈C:∣z∣q, the rate of approximation by the q-Durrmeyer type polynomials (q>1) is of order q-n versus 1/n for the classical (q=1) Durrmeyer type polynomials. Explicit formulas of Voronovskaya type for the q-Durrmeyer type operators for q>1 are also given. This paper represents an answer to the open problem initiated by Gal (2013) [6].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 237, 15 June 2014, Pages 293-303
نویسندگان
,