کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4628312 1631826 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear dynamics in a Solow model with delay and non-convex technology
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Nonlinear dynamics in a Solow model with delay and non-convex technology
چکیده انگلیسی

In this paper we propose an extension to the classic Solow model by introducing a non-concave production function and a time-to-build assumption. The capital accumulation equation is given by a delay differential equation that has two non-trivial stationary equilibria. By choosing time delay as the bifurcation parameter, we demonstrate that the “high” stationary solution may lose its stability and a Hopf bifurcation occurs when the delay passes through critical values. By applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. In addition, the Lindstedt–Poincaré method is used to calculate the bifurcated periodic solution, the direction of the bifurcation, and the stability of the periodic motion resulting from the bifurcation. The Hopf bifurcation is found to be supercritical. Finally, numerical simulations are given to justify the validity of the theoretical analysis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 228, 1 February 2014, Pages 1–12
نویسندگان
, , ,