کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4628449 | 1631830 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Some inequalities for the nonlinear matrix equation Xs+AâX-tA=Q: Trace, determinant and eigenvalue
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The nonlinear matrix equation Xs+AâX-tA=Q is investigated, where Q is a Hermitian positive definite matrix. We present the upper bound of det(AAâ)1n when the nonlinear matrix equation Xs+AâX-tA=Q has Hermitian positive definite solution. The bound of det(AAâ)1n improves the corresponding result in Duan and Liao (2008) [6, Theorem 3.3] and Yin et al. (2009) [17, Theorem 2.1]. We also get the bounds of detX1n and trX for the existence of a Hermitian positive definite solution, which generalize and improve the corresponding conclusions of Zhao (2013) [22]. We obtain some bounds for the eigenvalues of the Hermitian positive definite solution. As compared with earlier works on these topics, the results we present here are more general, and the analysis here is much simpler. Finally, we derive tight bounds about partial sum and partial product about the eigenvalues of the solution X for the nonlinear matrix equation Xs+AâX-tA=Q. These present improvements and completions for the existing bounds.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 224, 1 November 2013, Pages 21-28
Journal: Applied Mathematics and Computation - Volume 224, 1 November 2013, Pages 21-28
نویسندگان
Duanmei Zhou, Guoliang Chen, Xiangyun Zhang,