کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4628978 | 1340572 | 2013 | 16 صفحه PDF | دانلود رایگان |

In the present paper, we discuss the application of homotopy analysis to general nonlinear Klein–Gordon type equations. We first outline the method for general forms of the nonlinearity, as well as for general functional forms of the initial conditions. In particular, we discuss a method of controlling the residual error in approximate solutions which may be found via homotopy analysis, through adequate selection of the convergence control parameter. With the general problem outlined, we apply the method to various equations, including the quasilinear cubic Klein–Gordon equation, the modified Liouville equation, the sinh-Gordon equation, and the tanh-Gordon equation. For each of these equations and related initial data, we obtain residual error minimizing solutions which demonstrate the qualitative behavior of the true solutions in each case.
Journal: Applied Mathematics and Computation - Volume 219, Issue 12, 15 February 2013, Pages 6494–6509