کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4628989 1340572 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hopf bifurcation analysis of a system of coupled delayed-differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Hopf bifurcation analysis of a system of coupled delayed-differential equations
چکیده انگلیسی

In this paper, we have considered a system of delay differential equations. The system without delayed arises in the Lengyel–Epstein model. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. Linear stability is investigated and existence of Hopf bifurcation is demonstrated via analyzing the associated characteristic equation. For the Hopf bifurcation analysis, the delay parameter is chosen as a bifurcation parameter. The stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. (1981) [7]. Furthermore, the direction of the bifurcation, the stability and the period of periodic solutions are given. Finally, the theoretical results are supported by some numerical simulations.


► A system of delay-differential equation involving a discrete time delay is studied.
► Hopf bifurcation is analyzed by choosing delay parameter as a bifurcation parameter.
► When delay parameter passes through some critical values, Hopf bifurcation occurs.
► The direction of bifurcation, the period and the stability of solution are obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 12, 15 February 2013, Pages 6605–6617
نویسندگان
, ,