کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4629076 1340573 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces
چکیده انگلیسی

This paper presents the weighted progressive iteration approximation (WPIA) property for the triangular Bernstein basis over a triangle domain with uniform parameters, which is extended from the PIA property for triangular Bernstein basis proposed by Chen and Wang in [J. Chen, G.J. Wang, Progressive-iterative approximation for triangular Bézier surfaces, Computer-Aided Design 43 (2011) 889–895]. We also provide how to choose an optimal value of the weight to own the fastest convergence rate for triangular Bernstein basis. Furthermore, a new and efficient iterative method is proposed for polynomial approximation of rational triangular Bézier surfaces. The algorithm is reiterated until a halting condition about approximation error is satisfied. And the approximation error in Lp-norm (p = 1, 2, ∞) is calculated by the symmetric Gauss Legendre quadrature rule for composite numerical integration over a triangular surface. Finally, several numerical examples are presented to validate the effectiveness of this method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 17, 1 May 2013, Pages 9308–9316
نویسندگان
,