کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4629243 1340575 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimality conditions of strict minimality in optimization problems under inclusion constraints
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Optimality conditions of strict minimality in optimization problems under inclusion constraints
چکیده انگلیسی

In this paper, we extend the concepts of linearizing cone, regularity assumption and Lagrange multiplier rule due to Maurer and Zowe [H. Maurer, J. Zowe, First and second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems, Math. Program. 16 (1979) 98–110] to an optimization problem under inclusion constraints. By virtue of the Robinson–Ursescu open mapping theorem, we obtain a Kuhn–Tucker necessary optimality condition. Moreover, we propose a Lagrangian by using the support function for set-valued maps, and establish some second-order sufficient and necessary optimality conditions for a strict local minimizer of order 2 based on the second-order derivative of the Lagrangian. As applications, we also investigate some second-order optimality conditions for the strict local minimizer of order 2 of a smooth scalar optimization problem with equality and inequality constraints.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 9, 1 January 2013, Pages 4816–4825
نویسندگان
, ,