کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4629754 | 1340585 | 2012 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the remainder term of Gauss-Radau quadrature with Chebyshev weight of the third kind for analytic functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For analytic functions the remainder term of quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points â1 and a sum of semi-axes Ï>1, for Gauss-Radau quadrature formula with Chebyshev weight function of the third kind. Starting from the explicit expression of the corresponding kernel, derived by Gautschi, we determine the locations on the ellipses where maximum modulus of the kernel is attained. The obtained values confirm the corresponding conjectured values given by Gautschi in his paper [W. Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures, Rocky Mounatin J. Math. 21 (1991) 209-206]. In this way the last unproved conjecture from the mentioned paper is now verified.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 5, 15 November 2012, Pages 2760-2765
Journal: Applied Mathematics and Computation - Volume 219, Issue 5, 15 November 2012, Pages 2760-2765
نویسندگان
Aleksandar V. PejÄev, Miodrag M. SpaleviÄ,