کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4629780 1340586 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3
چکیده انگلیسی
In this paper, we derive eight basic identities of symmetry in three variables related to Bernoulli polynomials and power sums. These and most of their corollaries are new, since there have been results only about identities of symmetry in two variables. These abundance of symmetries shed new light even on the existing identities so as to yield some further interesting ones. The derivations of identities are based on the p-adic integral expression of the generating function for the Bernoulli polynomials and the quotient of integrals that can be expressed as the exponential generating function for the power sums.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 219, Issue 10, 15 January 2013, Pages 5096-5104
نویسندگان
, ,