کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4629903 | 1340588 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The existence and construction of rational Gauss-type quadrature rules
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Consider a hermitian positive-definite linear functional FF, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of n th rational Gauss–Radau (m=1)(m=1) and Gauss–Lobatto (m=2)(m=2) quadrature formulas that approximate F{f}F{f}. These are quadrature formulas with n positive weights and with the n-mn-m remaining nodes real and distinct, so that the quadrature is exact in a (2n-m)(2n-m)-dimensional space of rational functions. Further, we also consider the case in which the functional is defined by a positive bounded Borel measure on an interval, for which it is required in addition that the nodes are all in the support of the measure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 20, 15 June 2012, Pages 10299–10320
Journal: Applied Mathematics and Computation - Volume 218, Issue 20, 15 June 2012, Pages 10299–10320
نویسندگان
Karl Deckers, Adhemar Bultheel,