کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4629903 1340588 2012 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The existence and construction of rational Gauss-type quadrature rules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The existence and construction of rational Gauss-type quadrature rules
چکیده انگلیسی

Consider a hermitian positive-definite linear functional FF, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of n  th rational Gauss–Radau (m=1)(m=1) and Gauss–Lobatto (m=2)(m=2) quadrature formulas that approximate F{f}F{f}. These are quadrature formulas with n   positive weights and with the n-mn-m remaining nodes real and distinct, so that the quadrature is exact in a (2n-m)(2n-m)-dimensional space of rational functions. Further, we also consider the case in which the functional is defined by a positive bounded Borel measure on an interval, for which it is required in addition that the nodes are all in the support of the measure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 20, 15 June 2012, Pages 10299–10320
نویسندگان
, ,