کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4630409 | 1340599 | 2011 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enforcing energy, helicity and strong mass conservation in finite element computations for incompressible Navier–Stokes simulations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study a finite element scheme for the 3D Navier–Stokes equations (NSE) that globally conserves energy and helicity and, through the use of Scott–Vogelius elements, enforces pointwise the solenoidal constraints for velocity and vorticity. A complete numerical analysis is given, including proofs for conservation laws, unconditional stability and optimal convergence. We also show the method can be efficiently computed by exploiting a connection between this method, its associated penalty method, and the method arising from using grad-div stabilized Taylor–Hood elements. Finally, we give numerical examples which verify the theory and demonstrate the effectiveness of the scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 4, 15 October 2011, Pages 1208–1221
Journal: Applied Mathematics and Computation - Volume 218, Issue 4, 15 October 2011, Pages 1208–1221
نویسندگان
Benjamin R. Cousins, Leo G. Rebholz, Nicholas E. Wilson,