کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4630419 1340599 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Variable-coefficient Jacobi elliptic function expansion method for (2+1)-dimensional Nizhnik–Novikov–Vesselov equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Variable-coefficient Jacobi elliptic function expansion method for (2+1)-dimensional Nizhnik–Novikov–Vesselov equations
چکیده انگلیسی

In this paper, a variable-coefficient Jacobi elliptic function expansion method is proposed to seek more general exact solutions of nonlinear partial differential equations. Being concise and straightforward, this method is applied to the (2+1)-dimensional Nizhnik–Novikov–Vesselov equations. As a result, many new and more general exact non-travelling wave and coefficient function solutions are obtained including Jacobi elliptic function solutions, soliton-like solutions and trigonometric function solutions. To give more physical insights to the obtained solutions, we present graphically their representative structures by setting the arbitrary functions in the solutions as specific functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 4, 15 October 2011, Pages 1308–1316
نویسندگان
, ,