کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4630741 1340606 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Embedding a Hamiltonian cycle in the crossed cube with two required vertices in the fixed positions
چکیده انگلیسی

A Hamiltonian graph G is said to be panpositionably Hamiltonian if, for any two distinct vertices x and y of G, there is a Hamiltonian cycle C of G having dC(x, y) = l for any integer l   satisfying dG(x,y)⩽l⩽|V(G)|2, where dG(x, y) (respectively, dC(x, y)) denotes the distance between vertices x and y in G (respectively, C), and ∣V(G)∣ denotes the total number of vertices of G. As the importance of Hamiltonian properties for data communication among units in an interconnected system, the panpositionable Hamiltonicity involves more flexible message transmission. In this paper, we study this property with respect to the class of crossed cubes, which is a popular variant of the hypercube network.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 24, 15 August 2011, Pages 10058–10065
نویسندگان
, , ,