کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4630766 | 1340606 | 2011 | 10 صفحه PDF | دانلود رایگان |

It is well-known that the HS method and the PRP method may not converge for nonconvex optimization even with exact line search. Some globalization techniques have been proposed, for instance, the PRP+ globalization technique and the Grippo–Lucidi globalization technique for the PRP method. In this paper, we propose a new efficient globalization technique for general nonlinear conjugate gradient methods for nonconvex minimization. This new technique utilizes the information of the previous search direction sufficiently. Under suitable conditions, we prove that the nonlinear conjugate gradient methods with this new technique are globally convergent for nonconvex minimization if the line search satisfies Wolfe conditions or Armijo condition. Extensive numerical experiments are reported to show the efficiency of the proposed technique.
Journal: Applied Mathematics and Computation - Volume 217, Issue 24, 15 August 2011, Pages 10295–10304