کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4631608 | 1340625 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computing the region of convergence for power series in many real variables: A ratio-like test
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We give an elementary proof that the region of convergence for a power series in many real variables is a star-convex domain but not, in general, a convex domain. In doing so, we deduce a natural higher-dimensional analog of the so-called ratio test from univariate power series. From the constructive proof of this result, we arrive at a method to approximate the region of convergence up to a desired accuracy. While most results in the literature are for rather specialized classes of multivariate power series, the method devised here is general. As far as applications are concerned, note that while theorems such as the Cauchy-Kowalevski theorem (and its generalizations to many variables) grant the existence of a region of convergence for a multivariate Taylor series to certain PDEs under appropriate restrictions, they do not give the actual region of convergence. The determination of the maximal region of convergence for such a series solution to a PDE is one application of our result.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 218, Issue 5, 1 November 2011, Pages 2310-2317
Journal: Applied Mathematics and Computation - Volume 218, Issue 5, 1 November 2011, Pages 2310-2317
نویسندگان
Robert A. Van Gorder,