کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4631702 1340627 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preserving positivity in solutions of discretised stochastic differential equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Preserving positivity in solutions of discretised stochastic differential equations
چکیده انگلیسی

We consider the Euler discretisation of a scalar linear test equation with positive solutions and show for both strong and weak approximations that the probability of positivity over any finite interval of simulation tends to unity as the step size approaches zero. Although a.s. positivity in an approximation is impossible to achieve, we develop for the strong (Maruyama) approximation an asymptotic estimate of the number of mesh points required for positivity as our tolerance of non-positive trajectories tends to zero, and examine the effectiveness of this estimate in the context of practical numerical simulation. We show how this analysis generalises to equations with a drift coefficient that may display a high level of nonlinearity, but which must be linearly bounded from below (i.e. when acting towards zero), and a linearly bounded diffusion coefficient. Finally, in the linear case we develop a refined asymptotic estimate that is more useful as an a priori guide to the number of mesh points required to produce positive approximations with a given probability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 2, 15 September 2010, Pages 763–774
نویسندگان
, , , ,