کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4631891 1340631 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A family of optimal three-point methods for solving nonlinear equations using two parametric functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A family of optimal three-point methods for solving nonlinear equations using two parametric functions
چکیده انگلیسی
Using an interactive approach which combines symbolic computation and Taylor's series, a wide family of three-point iterative methods for solving nonlinear equations is constructed. These methods use two suitable parametric functions at the second and third step and reach the eighth order of convergence consuming only four function evaluations per iteration. This means that the proposed family supports the Kung-Traub hypothesis (1974) on the upper bound 2m of the order of multipoint methods based on m + 1 function evaluations, providing very high computational efficiency. Different methods are obtained by taking specific parametric functions. The presented numerical examples demonstrate exceptional convergence speed with only few function evaluations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 19, 1 June 2011, Pages 7612-7619
نویسندگان
, , ,