کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4631950 | 1340632 | 2010 | 7 صفحه PDF | دانلود رایگان |

Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. The mathematical basis of this method is given by the far-field equation, which is a Fredholm integral equation of the first kind in which the data function is a known analytic function and the integral kernel is the measured (and therefore noisy) far-field pattern. We present a Tikhonov parameter choice approach based on a fast fixed-point iteration method which constructs a regularization parameter associated with the corner of the L-curve in log–log scale. The performance of the method is evaluated by comparing our reconstructions with those obtained via the L-curve and we conclude that our method yields reliable reconstructions at a lower computational cost.
Journal: Applied Mathematics and Computation - Volume 216, Issue 12, 15 August 2010, Pages 3747–3753