کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4631950 1340632 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fixed-point iterations in determining a Tikhonov regularization parameter in Kirsch’s factorization method
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Fixed-point iterations in determining a Tikhonov regularization parameter in Kirsch’s factorization method
چکیده انگلیسی

Kirsch’s factorization method is a fast inversion technique for visualizing the profile of a scatterer from measurements of the far-field pattern. The mathematical basis of this method is given by the far-field equation, which is a Fredholm integral equation of the first kind in which the data function is a known analytic function and the integral kernel is the measured (and therefore noisy) far-field pattern. We present a Tikhonov parameter choice approach based on a fast fixed-point iteration method which constructs a regularization parameter associated with the corner of the L-curve in log–log scale. The performance of the method is evaluated by comparing our reconstructions with those obtained via the L-curve and we conclude that our method yields reliable reconstructions at a lower computational cost.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 216, Issue 12, 15 August 2010, Pages 3747–3753
نویسندگان
, , ,