کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4632386 | 1340644 | 2010 | 14 صفحه PDF | دانلود رایگان |

This paper investigates an enhanced proximal algorithm with interesting practical features and convergence properties for solving non-smooth convex minimization problems, or approximating zeroes of maximal monotone operators, in Hilbert spaces. The considered algorithm involves a recent inertial-type extrapolation technique, the use of enlargement of operators and also a recently proposed hybrid strategy, which combines inexact computation of the proximal iteration with a projection. Compared to other existing related methods, the resulting algorithm inherits the good convergence properties of the inertial-type extrapolation and the relaxed projection strategy. It also inherits the relative error tolerance of the hybrid proximal-projection method. As a special result, an update of inexact Newton-proximal method is derived and global convergence results are established.
Journal: Applied Mathematics and Computation - Volume 215, Issue 9, 1 January 2010, Pages 3149–3162