کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4632577 1340649 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
One-step 5-stage Hermite–Birkhoff–Taylor ODE solver of order 12
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
One-step 5-stage Hermite–Birkhoff–Taylor ODE solver of order 12
چکیده انگلیسی

A one-step 5-stage Hermite–Birkhoff–Taylor method, HBT(12)5, of order 12 is constructed for solving nonstiff systems of differential equations y′=f(t,y)y′=f(t,y), y(t0)=y0y(t0)=y0, where y∈Rny∈Rn. The method uses derivatives y′y′ to y(9)y(9) as in Taylor methods combined with a 5-stage Runge–Kutta method. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 12 leads to Taylor- and Runge–Kutta-type order conditions which are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. HBT(12)5 has a larger interval of absolute stability than Dormand–Prince DP(8, 7)13M and Taylor method T12 of order 12. The new method has also a smaller norm of principal error term than T12. It is superior to DP(8, 7)13M and T12 on the basis the number of steps, CPU time and maximum global error on common test problems. The formulae of HBT(12)5 are listed in an appendix.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 211, Issue 2, 15 May 2009, Pages 313–328
نویسندگان
, , , ,