کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4633146 1340663 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A BYY scale-incremental EM algorithm for Gaussian mixture learning
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
A BYY scale-incremental EM algorithm for Gaussian mixture learning
چکیده انگلیسی

Gaussian mixture model has been used extensively in the fields of information processing and data analysis. However, its model selection, i.e., the selection of number of components or Gaussians in the mixture, is still a difficult problem. Fortunately, the new established Bayesian Ying–Yang (BYY) harmony function provides an efficient criterion for the model selection of Gaussian mixture with a set of sample data. In this paper, we propose a BYY scale-incremental EM algorithm for Gaussian mixture learning via a component split rule to increase the BYY harmony function incrementally. Particularly, starting from two components and adding one component sequentially via the split rule after each EM procedure until a maximum number of components, the algorithm increases the scale of the mixture incrementally and leads to the maximization of the BYY harmony function, together with the correct model selection and a good parameter estimation of the Gaussian mixture. It is demonstrated well by the simulation experiments that this BYY scale-incremental EM algorithm can make both model selection and parameter estimation efficiently for Gaussian mixture modeling. Moreover, the BYY scale-incremental EM algorithm is successfully applied to two real-life data sets, including Iris data classification and unsupervised color image segmentation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 205, Issue 2, 15 November 2008, Pages 832–840
نویسندگان
, ,