کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4633330 | 1340667 | 2009 | 13 صفحه PDF | دانلود رایگان |

Although the numerical solution of one-dimensional phase-change, or Stefan, problems is well documented, a review of the most recent literature indicates that there are still unresolved issues regarding the start-up of a computation for a region that initially has zero thickness, as well as how to determine the location of the moving boundary thereafter. This paper considers the so-called boundary immobilization method for four benchmark melting problems, in tandem with three finite-difference discretization schemes. We demonstrate a combined analytical and numerical approach that eliminates completely the ad hoc treatment of the starting solution that is often used, and is numerically second-order accurate in both time and space, a point that has been consistently overlooked for this type of moving-boundary problem.
Journal: Applied Mathematics and Computation - Volume 215, Issue 4, 15 October 2009, Pages 1609–1621