کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4633423 | 1340670 | 2009 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
HPBILc: A histogram-based EDA for continuous optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Designing different estimation of distribution algorithms for continuous optimization is a recent emerging focus in the evolutionary computation field. This paper proposes an improved population-based incremental learning algorithm using histogram probabilistic model for continuous optimization. Histogram models are advantageous in describing the solution distribution of complex and multimodal continuous problems. The algorithm utilizes the sub-dividing strategy to guarantee the accuracy of optimal solutions. Experimental results show that the proposed algorithm is effective and it obtains better performance than the fast evolutionary programming (FEP) and those newly published EDAs in most test functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 215, Issue 3, 1 October 2009, Pages 973–982
Journal: Applied Mathematics and Computation - Volume 215, Issue 3, 1 October 2009, Pages 973–982
نویسندگان
Jing Xiao, YuPing Yan, Jun Zhang,