کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4633650 1340675 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Critical points theorems concerning strongly indefinite functionals and infinite many periodic solutions for a class of Hamiltonian systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Critical points theorems concerning strongly indefinite functionals and infinite many periodic solutions for a class of Hamiltonian systems
چکیده انگلیسی

Based on new deformation theorems concerning strongly indefinite functionals, we give some new min–max theorems which are useful in looking for critical points of functionals which are strongly indefinite and satisfy Cerami condition instead of Palais–Smale condition. As one application of abstract results, we study existence of multiple periodic solutions for a class of non-autonomous first order Hamiltonian system(HS)z˙=JHz(t,x,z),(t,x)∈R×Ω,where ̇=d/dt,Ω⊂RNN⩾1 is a bounded domain with smooth boundary ∂Ω∂Ω, z=(p,q)∈RM×RM=R2Mz=(p,q)∈RM×RM=R2M,J=0I-I0,and H(t,x,z)∈C1(R×Ω×R2M,R)H(t,x,z)∈C1(R×Ω×R2M,R).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 214, Issue 1, 1 August 2009, Pages 187–200
نویسندگان
, ,